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High Brightness        (1)High Brightness        (1)
A high brightness means that the electron bunch 
has a high density in 6 phase space dimensions 
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1 nC → 100nC / pulse
20 ps → 0.3 ps

100 A → 10 kA

1011 → 1015 A.m-2.rad-2

10-4 m.rad → 10-6 m.rad
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High Brightness        (2)High Brightness        (2)

Some examples of source requirements

I 
(A)

tFHHM

(ps)
en

(mm.mrad)
Bn

(A.m-2.rad-2)

Linear Collider 500 8 10 1.1013

SASE-FEL 180 6 2 9.1013

Laser Wakefield Acc. 1000 0.2 3 2.1014

Energy recovery linac 50 3 1 1014

Future Light Source ~ 2015
“GreenField” FEL (30 KeV)

500 < 1 0.1 1017
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PhotoPhoto--injector           (1)injector           (1)
The photo-injector is a source,  it must
fulfill the specifications and it must be

available and reliable

Typical expected behavior:

Operation time : 2000 – 5000 h / year
Availability > 95 %
MTBF > 1000 h   ;  MTTR < 4 h
1 long annual shutdown (2 – 3 months)
2 or 3 short shutdowns / year (1 week)
Total lifetime : ~ 10 years
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PhotoPhoto--injector           (2)injector           (2)
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PhotocathodesPhotocathodes
Three main sorts:

Metallic photocathodes

Activated Gallium-Arsenide photocathodes

Alkali photocathodes 
Cesium-iodide 
Alkali-antimonide
Alkali-telluride

Weak part of photo-injectors
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Metallic PhotocathodesMetallic Photocathodes

Require UV light and high laser power

Special surface treatment for reasonable QE

Well adapted for high electric field ≥ 100 MV/m

Well adapted for “low” charge production, typically 1 to 
few nC per pulse and low mean current: few µA

With QE ~ 10-3, Mg seems to be the best metallic photocathode
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Activated Activated GaGa--As photocathodesAs photocathodes
Mandatory for polarized electron photo-injectors

Tsutomu Nakanishi , LINAC 2002

Strong cleaning by heating and/or with H-

NEA activation with Cs+O2 or Cs+NF3
Very good vacuum < 10-11 mbar
Low electric field  < 5 MV/m
NO breakdown
Very low dark current

Requirements

Best performances
Polarization ~ 90 % ; QE ~ 0.5 % @ 780 nm
Low thermal emittance ~ 25 meV)
Shorter pulse length ~ 80 ps
Imax ~ 8 A

Main limitations
Surface Charge Limit (SCL)
Lifetime
Response time

Could be overcome with the two photon process
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Alkali photocathodesAlkali photocathodes
Photocathodes λ (nm) QE (%) Lifetime

CsI < 200 20 years

years

Days-
hours

Months-
weeks

Air transportable, 
Wavelength too short

CsI+Ge < 270 0.2
Air transportable, 
Delicate conditioning 
process

Alkali 
antimonide

K2CsSb
Na2K(Cs)Sb

< 600 10
Lifetime too short, 
UHV required

Alkali 
telluride

Cs2Te, 
RbCsTe < 270 15

Good lifetime and QE,
UHV and UV light 
required

Alkali 
iodide

For the time being, Cs-Te photocathodes are the most
used for high current and high charge production

in operational photo-injectors 
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Improvement of alkali cathode Improvement of alkali cathode 
preparationpreparation

CoCo--evaporation processevaporation process
UV laser beam
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G. Suberlucq, CERN
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Difficult thickness measurements  and  poor reproducibility

Study supported by E.U. inside CARE – JRA - PHIN
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Lifetime of CsLifetime of Cs--Te Te photocathphotocath. . 
Dramatic 
improvement of QE 
and lifetime of 
photocathodes 
produced by the co-
evaporation process0
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Classical evaporation process  :
 Mean lifetime of 6 photo-cathodes, including high charge test

DC gun measurement : 8 MV/m
p ≤ 10-10 mbar 

Co-evaporation process
Mean lifetime of 4 photocathodes

CERN measurements
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Cath. 144
in the RF gun

QE(t) = QE1.e(-t/τ1) + QE2.e(-t/τ2) 

Mean lifetime (4 cath.) in the DC gun @ 8 MV/m
p ≤ 10-10 mbar 

Mean lifetime (5 cath.) during storage in the T.C.
p ≈ 3*10-11 mbar 

3 %

55 h

Mean lifetime (9 cath.) in theRF gun
 100 MV/m  ;   2*10-9 ≤ p ≤ 7*10-9 mbar
including  2 cathodes destroyed during
RF conditionning 

3153.4149.2RF gun

779.512.7465.92.24DC gun

33119.1718.93.85Transport carrier
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But photocathodes 
produced by co-
evaporation seem 
to be more 
sensitive to the 
vacuum quality
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Secondary Emission EnhancedSecondary Emission Enhanced
photophoto--emitteremitter

Proposal from I. Ben-Zvi et al. C-A/AP#149, April 2004, BNL

The diamond window is 
transparent to photons and 
electrons
Electrons are produced by a 
laser beam shooting an 
alkaline cathode
Electrons are multiplied by 
secondary emission by the 
diamond window

Cathode insert consist of :

Alkali antimonide cathode

A sealed diamond window 
(~10 µm thick)

UHV in between

Expected advantages

Very high equivalent QE ~ 1000 % !
Low laser power
Low thermal emittance (NEA surface)
No mutual contamination between the gun 
and the photocathode 
Possible high mean current
No load-lock system
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LasersLasers
Master Oscillator Power Amplifier setup to allow ps synchronization

STRONG progress in optical pumping and in lasing medium
Laser diode pumped solid state (LDPSS) lasers
Nd:Vanadate lasers are replacing Nd:YAG lasers
Thanks to InGaAs laser diodes emitting in the 900-980 nm, 
Ytterbium (Yb3+) is the most promising doping material.
Many new crystals : apatite (S-FAP, CLYPA, SYS, …), 
tungstate (KYW, KGW), sesquioxyde (Sc2O3, …) Yb3+ doped
High power oscillator > 60 W
Fiber laser (not yet actively mode-locked)
High frequency mode-locked oscillator : 1.5 GHz commercially 
available
Transversal and Longitudinal pulse shaping.

SMALL progress in frequency conversion 
50-55 % IR to VIS  ;  25-30 %  VIS to UV
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NLC Laser setNLC Laser set--up proposal up proposal 

http://www-project.slac.stanford.edu/lc/local/systems/
Lasers/CombinedLaserSystem/laserr_d.pdf

Pulses per train 1 - 200 adjustable
Pulse rate 357MHz or 714MHz
Pulse length 200psec to 700psec adjustable
Pulse temporal shape Square, or adjustable 
with 100psec bandwidth
Train temporal shape Adjustable: 30 nanosecond 
time constant
Wavelength range 750 to 870nm (with optics 
change)
Wavelength tuning range +/- 5nm remote tuning
Bandwidth <1 nanometer
Pulse energy 5 - 30 micro Joules to 
photocathode maximum.
Transverse profile TEM00
Intensity Stability 0.5% RMS
Position stability <1% spot radius RMS
Wavelength stability 0.1 nanometers
Bunch timing stability <10 picoseconds RMS
System MTBF >1000 Hours (Single laser)
System MTTR <4 Hours (Single laser)
System lifetime >50,000 Hours
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CERN CERN -- CTF3 Laser proposalCTF3 Laser proposal
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M. Divall - RAL

Design and construction supported by E.U. inside CARE – JRA - PHIN
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SPARC Laser proposalSPARC Laser proposal

SPARC Laser group
C. Vicario, A. Ghigo, 

F. Tazzioli, I. Boscolo, 
S. Cialdi

Operating wavelength 260-280 nm

Repetition rate 10-100 Hz

Number of micropulse
per pulse

1

Pulse energy on cathode 500µJ (Q.E.=10-5)

Pulse rise time (10-90%) < 1 ps

Pulse length 2-10 ps FWHM

Temporal pulse shape Uniform (10% ptp)

Transverse pulse shape  Uniform (10% ptp)

Energy jitter (in UV) 1 % rms

Laser-RF jitter < 1ps rms

Spot diameter on cathode Circular 1 mm

Spot diameter jitter 1% rms

Pointing Stability 1% diameter rms
8 mJ 0.8 mJ

0.5 mJ
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Temporal pulse shapingTemporal pulse shaping
Liquid crystal spatial light phase Liquid crystal spatial light phase 

modulator in Fourier planemodulator in Fourier plane
From  L Serafini - INFN
2nd ORION Workshop - SLAC - Feb. 19th, 2003

Collinear AcoustoCollinear Acousto--Optic modulator (AOM)Optic modulator (AOM)

F. Verluise et al. Arbitrary dispersion control of ultrashort
optical pulses with acoustic waves, 
J. Opt. Soc. Am. B/Vol. 17, No 1/January 2000D. Meshulach, D. Yelin, Y. Silberberge

J. Opt. Soc. Am., B 15 (1998) 1615 

Study supported by E.U. inside CARE – JRA - PHIN
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GunsGuns

high intensity, high electric field RF gun

High mean current SRF gun

Very good vacuum, low electric field DC gun

Medium I, medium electric field PWT Under dev.

U
npolarized

e
-

Very high electric field (GV/m)
Pulsed DC gun
Under dev. 

Low electric field DC gun

Polarized 
e
-

Medium I, medium electric field PWT Under dev.
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RF guns : 1.5 cells BNLRF guns : 1.5 cells BNL--typetype

1 + ½ cells  ,  f = 2.856 GHz  ,  Cavity Q = 11800  ,  Ecath. = 100 MV/m  ,  Beam energy = 4.85 MeV

1 pulse  ,  charge = 1 nC  , Laser pulse width : σ = 2 psec.

Emittance at the cathode : ex = 3.5 mm.mrad ,  Emittance at exit : ex = 7.3 mm.mrad

K. Batchelor et al. Operational Status of the Brookhaven National Laboratory Accelerator Test Facility,
Proceedings of the 1989 IEEE PAC Conference,
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CTF2 drive beam RF gunCTF2 drive beam RF gun

100-110 MV/m operational field at the cathode
16 MW input power at 100 MV/m
Beam energy 7 MeV at 100 MV/m
Maximum produced charge : 750 nC in 48 pulses
Pulse width 10 ps FWHM
Maximum single pulse charge : 100 nC
Used photocathodes : Cs2Te, Rb2Te, Mg, Cu, Al

Laser

e-

RF gun optimized for high charge and
high stored energy to minimize transient
beam loading. Successfully operated 
since 1996 until 2002
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RF gun RF gun desorptiondesorption
Gun desorption is a potentially serious problem for high charge production
Special attention must be paid to the pumping speed
Low desorption material must be used
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Superconducting RF gun   (1)Superconducting RF gun   (1)

Radiation source ELBE
J. Teichert et al. , SRF 2003, LübeckT. Srinivasan-Rao et al. PAC 2003

Q. Zaho et al. PAC 2003

Superconducting RF gun under
Development at BNL
½ cell Nionium cavity , 1.3 GHz
Emax = 45 MV/m
Niobium cath. QE ~ 5.10-5 at 262 nm
with laser cleaning. 

For high mean current, the requested 
laser power is too large  : 

PL = 95 W / mA

Superconducting RF gun at Rossendorf
½ cell Nionium cavity , 1.3 GHz
Tesla geometry
Normal-conducting Cs2Te photocath.
at LN2 temperature and thermally
insulated. Illuminated with 1 W laser
at 262 nm
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Project under study
3½-cell niobium cavity
Will be operated at 2 K
Cs2Te cath. @ LN2 temp. 
thermally insulated
Expected QE ~ 5 %

Superconducting RF gun   (2)Superconducting RF gun   (2)

Courtesy of J. Teichert
Forschungszentrum Rossendorf

Study supported by E.U. inside CARE – JRA - PHIN
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DC gunsDC guns

Advantages

Very good vacuum : 
10-12 mbar range
Very low dark current : 
~ 2 pA/cm2 @ 30 MV/m
High mean current 

Disadvantages

Limited current density :
J = perv.U1.5 ~ 200 A/cm2

Limited electric field :
E ≤ 30 MV/m
Limited potential : 
U ≤ 500 kV

For the present time
mandatory for  GaAs photocathode applications
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Other gunsOther guns
Pulsed DC + RF gun

G. Travish et al. PAC 2003

THE UCLA PEGASUS PWT   S-band gun

Epeak : 60 MV/m
Energy : 12 – 18 MeV
EmittanceN : 4 mm.mrad (rms)
Charge : 1 nC ; Bunch length : 1 – 10 ps

60 cm total length
11 cells

Tank diam. : 12 cm
Disk diam. : 4.2 cm

Large vacuum conductance and moderate
electric field

Plane Wave Transformer RF gun
Alpha-X project   DC/RF photo-injector
Strathclyde university  and Eindhoven
University of Technology 

M.J. de Loos et al. EPAC 2002

UDC = 2 MV  ;  1 ns
Epeak-DC : 1 GV/m ; Gap : 2 mm
S-band RF gun  ;  100 MV/m
Output Energy : 10 MeV
EmittanceN : 1.π.mm.mrad
Charge : 100 pC
Bunch length : 50 - 200 fs
Peak current : 1 kA

http://phys.strath.ac.uk/alpha-x/index.html
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CsCs--Te Layer behaviorTe Layer behavior

Photocathode after 170 working hours
in the DC gun @ 8 MV/m and 7nC/pulse
8 ns, 10 Hz, P ≤ 5x10-10mbar

QEstart = 16.4 %  ;  QEend = 4.2 %

Photocathode after 148 working hours
in the RF gun @ 105 MV/m, 180 nC
in 24 pulses , 10 ps FWHM
Rep. rate = 5 Hz , P ~ 2x10-9mbar
QEstart = 11.4 % ; QEend = 2.2 % 

Fresh photocathode before use

Cu photocathode destroyed 
at 85 MV/m during conditioning 
process
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Technological challenges: top 10Technological challenges: top 10
(very subjective selection …)

Photocathodes :
Secondary Emission Enhanced photo-emitter;
Polarized electron production with bulk GaAs photocathodes;
Co-evaporation process for alkali cathode production.

Lasers :
High efficiency frequency conversion crystals ;
Mode-locked high power GHz oscillators;
Pulse shaping (longitudinal and transversal).

Guns :
Very high voltage DC gun (DC/RF photo-injector);
High charge production without RF gun desorption;
SRF gun with high QE photocathode. 
PWT gun with pressure < 10-11 mbar
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