CERN Lab activities related to PHIN

1. DC and RF gun results with cesium telluride photocathode :

- a) Cathode produced by the standard evaporation process
- b) Cathode produced by co-evaporation

2. CTF3 photocathode requirements

- 3. Photocathode studies: CERN proposal
- 4. The CTF3 photo-injector: CERN part
- 5. Installation
- 6. Schedule

Standard evaporation process : Cs₂Te typical results

Standard evaporation process means : evaporation of an alkaline layer over a tellurium layer on different substratum

Typical results with Cs ₂ Te	DC gun (35 cath.)	RF gun (49 cath.)
Nom. electric field	8 MV/m	100 MV/m
Peak current	20 A	Few kA
Pulse width (FWHM)	6 ns	10 ps
Higher mean current	1 mA	8 μΑ
Best substratum	Au	Cu – Au (?)
Starting QE	$4 \% \le QE \le 22 \%$	$2 \% \le QE \le 8 \%$
Typical lifetime with QE > 1.5 %	Few months (extrapolated)	Few weeks
Working vacuum pressure	10 ⁻¹⁰ mbar	1 – 5 x10 ⁻⁹ mbar
Storage vacuum pressure	few 10 ⁻¹¹ mbar	10 ⁻¹⁰ mbar

Standard evaporation process : High charge test (mC)

Recap of photocathode studies

Since 1991 we tested many sorts of photocathodes :

- 1. Metallic photocathodes : Al, Au, Cu, Mg, Mo, Sm, Y
 - ★ QE < 10⁻³ even with special treatment (etching, laser conditioning)
 - QE too low for high charge production : very high powerful laser and/or plasma production at the photocathode. Not suitable for our application

2. Alkali-antimonide photocathodes : Cs₃Sb, K₂CsSb, K₃Sb

- Need ultra high vacuum
- * Good QE at visible light but lifetime too short (few hours) not suitable for our application

3. Alkali-telluride photocathodes : Cs₂Te, Rb₂Te, RbCsTe, Li₂Te

- Need UHV
- ★ RbCsTe and Rb₂Te : possible rejuvenation after air exposure by heating or etching
- Cs₂Te : standard photocathode for our applications : few % during weeks at high charge and high electric field (up to 120 MV/m)

4. Other photocathodes : CsI, CsI+Ge, Cs₃As, GaAsO, PLZT, TiO₂

- * CsI+Ge had been used from 1994 to 2000 in the Probe Beam RF gun because it is air transportable
- We had no success with the GaAs activation for e-pol. production : preparation chamber not adapted to this application

Photocathodes were deposited on different substrates (Al, Au, Cu, Mg, Mo, Stainless Steel) chemically cleaned and/or cleaned by argon ion bombardment :

Cu with chemical and etching cleaning with RF conditioning seems to be the best for high electric field.

Co-evaporation process

G. Suberlucq CERN

Photocathode Requirements for the CTF3 - DB

- Solution Photocathodes with a QE \geq 3 % during at least 40 working hours
- A photocathode production to guarantee a continuous run of at least 6 months

For that we have to do :

- * A complete maintenance of the preparation chamber and of the transport carrier (for CTF2 and CTF3 thermoionic gun area installation)
- * Adapt the RF gun transfer chamber (MPC) to the new gun and to the new sites (we assume the same photocathode plug)
- * Re-use and/or develop an automatic RF conditioning process
- Pursue photocathode studies mainly to increase the lifetime, the reproducibility, and to fulfil the CLIC requirements
- * Design and built new transport carrier and/or MPC for installation in the CTF3 linac area (not scheduled)

Photocathode studies - CERN proposal

- **Keproducibility of alkali-telluride photocathodes produced by co-evaporation**
- **Study of alkali-antimonide photocathodes produced by co-evaporation**
- **Comparison between telluride and antimonide cathodes for the CTF3 specifications**

Preparation chamber developments

- Stoïchiometric ratio measurement
- **Evaporation rate control**
- **Evaporator design for co-evaporation**

CARE PHIN JRA2 Meeting 19/11/2003

G. Suberlucq CERN

The CTF3 photo-injector

G. Suberlucq CERN

Pulse Train production

G. Suberlucq CERN

CTF3 photo-injector: CERN participation

- 🌭 Laser :
 - * Pulse train generation
 - * Pockel's cell study
 - Harmonic conversion efficiency study
 - * Laser monitoring
 - * Feedback control, amplitude regulation
 - * Automatic control of the laser beam position
- 🄖 Timing
- Photocathodes
 - * Maintenance of preparation chamber, TC and MPC
- s RF power
- Installation and commissioning

G. Suberlucq CERN

Installation : Photo-Injector in the CTF2

G. Suberlucq CERN

Installation : Photo-Injector in the CTF3

Photo-injector as the CTF3 source

G. Suberlucq CERN

Schedule

Realization of the photo-injector option in two steps :

Solution Solution Solution

Solution Solution Solution

- > Installation during the shut-down 2006-2007
- Commissioning spring 2007

G. Suberlucq CERN