5kW DIODE-PUMPED TEST AMPLIFIER

SUMMARY

- ?Gain- OK, suggest high pump
efficiency
- ?Efficient extraction OK, but more accurate data required
- ?Self-stabilisation Yes, to a few % but not well matched to analysis
 - improvement anticipated
 - needs slow feedback system
- ?30% amplified beam uniformity
 better with fatter rod
- ?Thermal lensing and astigmatism measured - predict good correction for CLIC power
- ?Polished rod fractured at predicted power/cm
 etched rod believed better

REMAINING CHALLENGES FOR CLIC?

*STABILITY - Requires slow feedback system - Fast feedback system??

***SYNCHRONISATION** - To be determined

*UNIFORMITY - OK improvements expected - options possible

*AMPLIFIED PULSE TRAIN - Low risk

*ENERGY EXTRACTION OVER LARGE AREA - Low risk

THE PHOTO-INJECTOR OPTION

*BACKGROUND

***CLIC/CTF3 DESIGN STUDY**

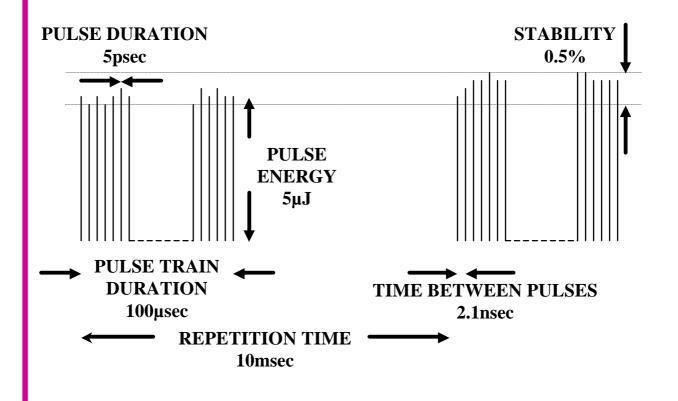
***'PILOT' TESTS ON CTF2**

DESIGN STUDY ISSUES

*PHOTO-CATHODE robust, QE, stable
*DP OSCILLATOR power, repetition rate
*DP AMPLIFIER power, efficiency, stability
*HARMONIC GENERATION efficiency
*SYNCHRONISATION 1ps

OUTSTANDING ISSUES

*1.5GHz(CTF3)/0.5GHz(CLIC) oscillator


*Electron charge measurement and stabilisation to 0.1%

*Synchronisation

*Photo-cathode reliability

PHOTO-CATHODE ILLUMINATION

PHOTO-CATHODE SPECIFICATIONS

	CLIC	CTF3
UV energy per micropulse	5µJ	0.84µJ
Pulse duration	<10ps	<10ps
Wavelength	<270nm	<270nm
Time between pulses	2.13ns	0.67ns
Pulse train duration	91.6µs	1.4µs
Repetition Rate	100Hz	5Hz
Energy stability	< 0.5%	< 0.5%
Laser/RF synchronisation	<1ps	<1ps
Reliability	10 ⁹ shots between servicing 4 months at 100Hz	
Cu.		

LASER SPECIFICATIONS

Energy per micropulse	100µJ
Total pulse train energy	4.3 J
Pulse train mean power	47 kW
Laser average power	430W
Shot to shot stability and controllability	0.5%

KEY ISSUES

•0.5% Stability and Controllability

•47kW pulse train power

•430W average power

•1ps synchronisation

State of the Art

Commercial Systems

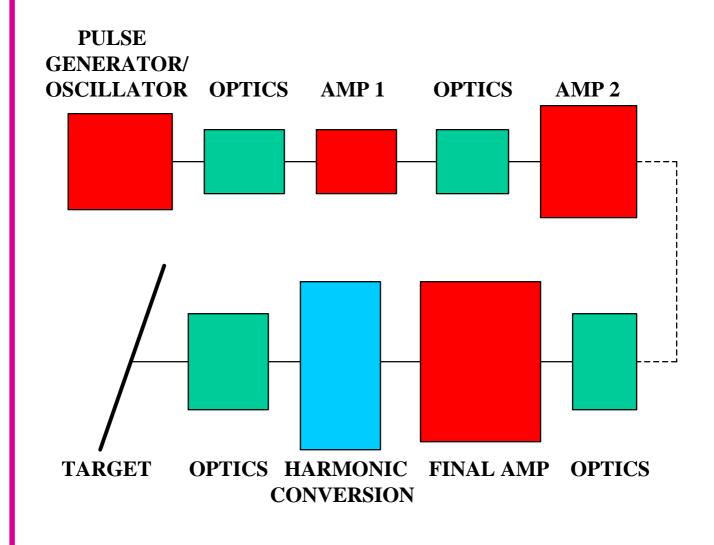
10W cw TEM ₀₀	Nd:Vanadate	 for pumping TiS (eg Millenia)
1kW cw	Nd:YAG	-for engineering applications
1J/100Hz	Nd:YAG	-for engineering applications

Demonstrated Systems

- Oscillators- 5kW multimode 200W cw TEM₀₀ 50W cw modelocked TEM₀₀
- MOPA- 10J/100Hz 10mJ / 15 fs/ 1kHz

Designed Systems

- Oscillators- >10kW
- MOPA >100kW



BASIC DESIGN STRATEGY

Stability	- CW or QUASI-CW laser DIODE-PUMPING fast FEEDBACK fully SATURATE amplifiers
Pulse train power 47kW	 min. diode pump power (min. COST) max. pump efficiency AMP. DESIGN/ MATERIAL max. extraction efficiency STAGING OPTICS
Average power 420W	- thermal dynamics MATERIAL FRACTURE OPTICAL DISTORTION
Simple design	- small number of rod amplifiers with high gain - MATERIAL
UV efficiency	- important since gives min. COST OPTICS

BASIC LASER SYSTEM

MATERIAL

Nd:YLF **High efficiency** High gain Low distortion

cw MODELOCKED ND:YLF OSCILLATOR

Available commercially

Expected performance - 50W @ 0.5GHz (CLIC)

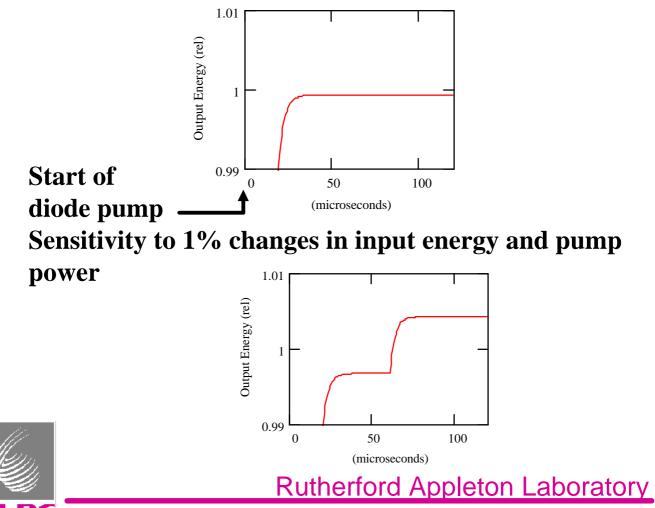
- 5ps @ 1047nm

NUMBER OF AMPLIFIERS

Available input energy per pulse = 100nJ Required output energy per pulse = $100\mu J$

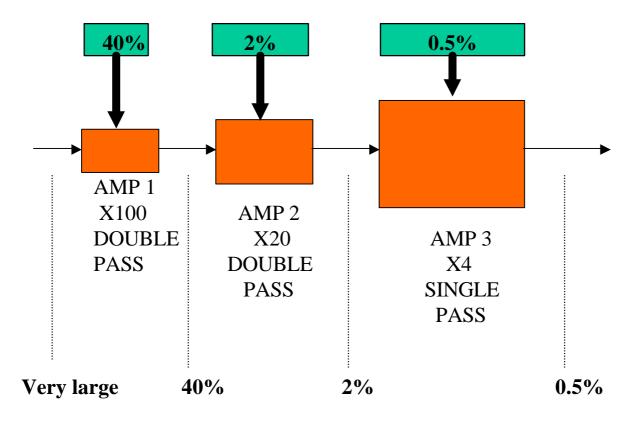
Required amplifier gain = 1,000

Simple system has 3 amplifiers with average gain per amplifier of 10.

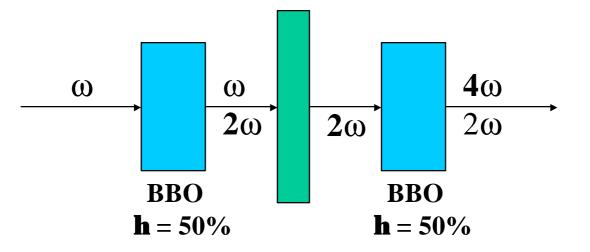

FINAL AMPLIFIER DESIGN - PHYSICS

Requirements - diode pump power > output power (47kW)

- efficient extraction of diode power
- high stability along the pulse train

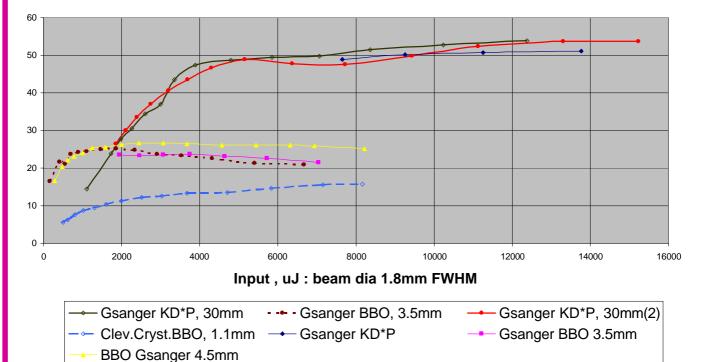

Simulations carried out for single and double pass amplifiers.

For maximum stability the trick is to operate in quasisteady-state mode with continuous pulse train input.


AMPLIFICATION SCHEME TOLERANCES FOR 0.5% STABILITY

QCW PUMP DIODE ARRAY MODULES

FOURTH HARMONIC GENERATION


•Predicts 25% efficiency overall

- •Literature reports 25% efficiency
- •Requires optics to give square flat-top beam
- •Design assumed 10% achievement of say 20% would substantially cut the cost of laser.

SECOND AND FOURTH HARMONIC CONVERSION EFFICIENCY MEASUREMENTS

Conversion efficiency

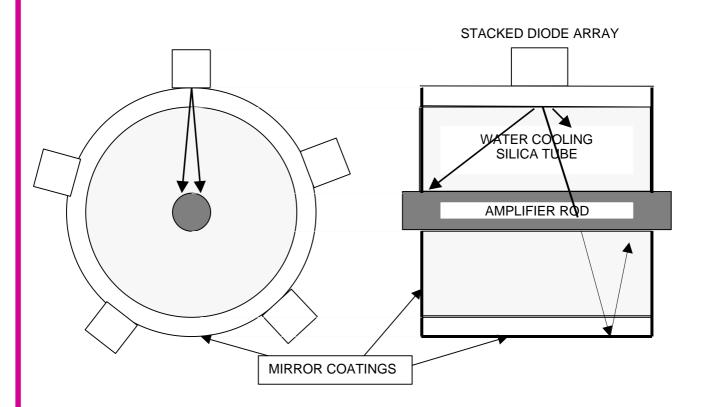
OPTICS DESIGN

REQUIREMENTS

•Stability requires generation of a single mode beam.

•For maximum efficiency the beam must have a square flat top profile at amplifiers harmonic crystals photo-cathode

•Compensation for thermal lensing in amplifiers.



DEVELOPMENT PROGRAMME

- Photo-cathode performance encouraging results
- High power cw mode-locked Nd:YLF oscillator operation at 0.5GHz
- Feedback control of a) laser pump diode current (µsec) b) fast optical gate (nsec) needs FAST ACCURATE (0.1%) monitor
- Amplification highly stabilised output pulse train
 high efficiency
 - lensing compensation
- Fourth harmonic generation high efficiency
- Check laser damage thresholds

TEST AMPLIFIER DESIGN - LAYOUT

•Scaled down diameter (5mm rod)

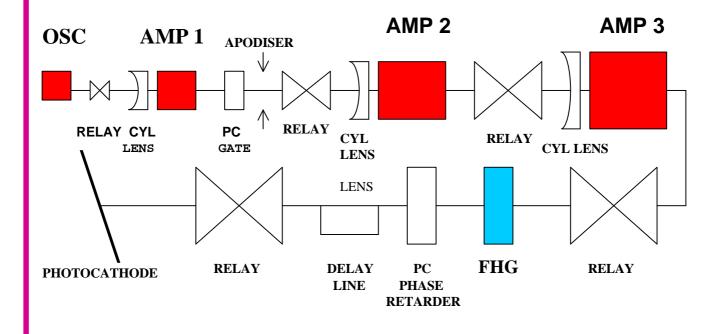
•Reduced stacked array length (5kW total)

•Measure efficiency stability under conditions of heavy saturation

CONCLUSIONS

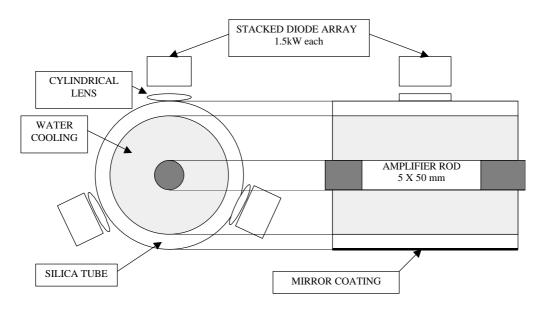
•FEASIBLE

•AFFORDABLE


Total pump power for CLIC ~75kW @ \$7/W gives \$0.5M for the diode arrays and a system cost of perhaps \$1M

•INITIAL TESTS indicate good efficiency and stability

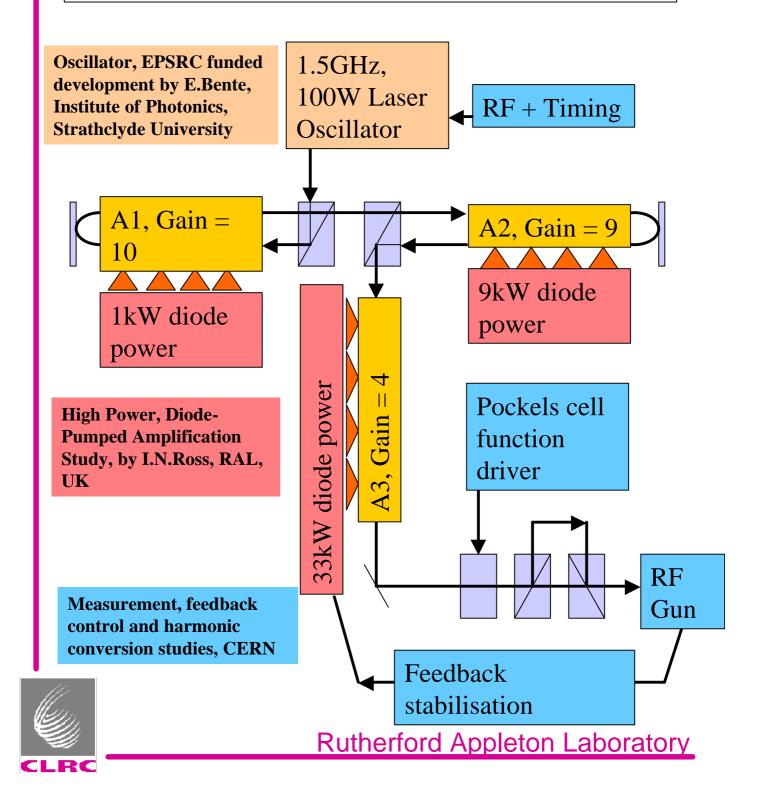
•BASIS for other laser-particle beam applications


OPTICS SCHEME FOR PHOTO-INJECTOR LASER SYSTEM

PROPOSED RAL PROGRAMME

Amplifier development - test as close to design parameters as possible - at minimum cost

Scaled down version with short length - 4.5kW pump Gives measurable small signal and saturated gain


Good test of: pump efficiency gain steady state saturated operation extraction of stored energy thermal effects

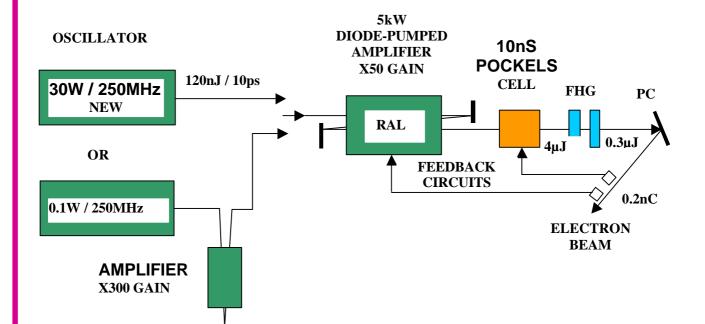
Develop theory and simulations

THE CTF3 PHOTO-INJECTOR LASER SYSTEM

RAL, Strathclyde University and CERN

'PILOT' CTF2 TESTS

AIMS


Demonstrate stable pulse train operation yielding 0.2nC per electron bunch from the photocathode at a frequency of 250MHz and for a train length of 1.5µs.

Demonstrate optical feedback stabilisation of the optical pulse train to 1%.

Demonstrate beams on the photo-cathode spatially uniform to 30%.

PHOTO-INJECTOR LASER FOR 'PILOT' TESTS

